Annonce

Réduire
Aucune annonce.

Ancient Islamic Penrose Tiles

Réduire
Cette discussion est fermée.
X
X
 
  • Filtre
  • Heure
  • Afficher
Tout nettoyer
nouveaux messages

  • Ancient Islamic Penrose Tiles

    Ancient Islamic Penrose Tiles
    By Julie Rehmeyer
    http://www.sciencenews.org/view/gene..._Penrose_Tiles

    Archway from the Darb-i
    Imam shrine in Isfahan, Iran, which was built in 1453 C.E. The larger pentagons outlined in pale blue were constructed using a large-scale girih tile pattern, and the small white pentagons were constructed using a small-scale girih tile pattern.Image courtesy of K. Dudley and M. Elliff.




    When Peter J. Lu traveled to Uzbekistan, he had no idea of the mathematical journey that he was about to embark on as well.
    The Harvard graduate student in physics was fascinated by the beautiful and intricate geometric "girih" patterns on the 800-year-old buildings there, and he wanted to know how ancient artisans had created them. He discovered more than just a clever construction method. He also found an entirely unexpected level of mathematical sophistication in the designs, pointing at mathematical ideas that weren't formally developed until hundreds of years later.
    Lu's determination to find out took him on a journey through hundreds of photographs of Islamic architecture in the libraries at Harvard—and now it's landed him an article in Science.


    Kite and dart Penrose tiles.Wikipedia



    The only mathematical tools the builders had available to them were straightedge and compass. Theoretically, all these patterns could be made by drawing the lines directly onto the buildings.
    But Lu noticed that the patterns were astonishingly perfect, even over very large areas. If the builders had been scribing the patterns directly on a wall, Lu expected the patterns to accumulate small errors that would be detectable on really big walls.
    But he didn't see any errors. So he figured that they must have had some tricks to guide the pattern making, and he decided to figure out what they were.
    A Penrose tiling made up of fat and skinny diamonds.Wikipedia



    He had a clue where to look from his undergraduate research. The patterns on the Islamic buildings reminded him of Penrose tiles, which are two simple geometric shapes, usually a kite and a dart or a fat and a skinny rhombus (diamond). When laid down in a tiling, these pairs of tiles can cover a plane in a pattern that never repeats.
    As a Penrose tiling spreads across a larger and larger surface, the ratio between the numbers of each type of tile approaches the golden ratio. The golden ratio (or mean) is the irrational number 1.618 . . . .
    Penrose tilings also have fivefold rotational symmetry, the same kind of a symmetry that a five-pointed star has. If you rotate the whole pattern by 72 degrees, it looks just the same.



    For his undergraduate thesis, Lu had looked for examples in the physical world of quasicrystals, materials that are thought to have crystal structures that are three-dimensional versions of a Penrose tiling. Physical quasicrystals have remarkable properties. For example, metal quasicrystals don't conduct heat very well, and a company is now developing a tough but slippery nonstick coating from quasicrystals.
    The patterns on Islamic buildings had lots of pentagons and decagons and stars, geometric figures with fivefold symmetry. Lu immediately thought of Penrose tiles.
    "I see a fivefold pattern and my eyes light up, and I try to decompose it into tiles," he says.
    The five decorated shapes.Peter J. Lu



    Lu returned to Harvard and studied photos, trying to deconstruct the patterns. He found a picture of a 15th-century architectural scroll from Istanbul, the Topkapi scroll, which was "like the AutoCAD manual for ancient times," Lu says.
    The main, dark pattern of red and blue lines was very complex and nonrepeating. But underneath, he saw a fainter red pattern that broke the design up into five decorated tiles: a decagon, a pentagon, a hexagon, a bowtie, and a rhombus.
    He had hit paydirt. It was just like a Penrose tiling.


    An archway in the Sultan's Lodge in the Green Mosque in Bursa, Turkey from 1424.Image courtesy of W.B. Denny



    When Lu looked at photographs of Islamic buildings, he found that he could break the patterns on their surfaces up into the same shapes, even though the shapes often weren't immediately visible. "I couldn't sleep for days," he said. "I skipped Christmas break to work on it."
    Lu suggests that Islamic architects used these shapes, which he calls girih tiles, to scribe the patterns onto the walls. That would explain how they tiled large surfaces with such precision.
    Lu also figured out that the girih tiles could be broken up into the kites and darts of Penrose tiles. When he divided the tiles in this way, one building, the Darb-i Imam shrine, had a near-perfect Penrose tiling. The shrine was built in 1453, and it would be another 500 years before the mathematics behind Penrose tiles was developed.

    The Darb-i Imam shrine was particularly remarkable because it showed girih tile patterns at two different scales, so that large girih tiles were broken up into smaller girih tiles. In principle, by repeatedly scaling up the tiling in this way, they could have covered an arbitrarily large wall with a Penrose tiling.
    Lu has a history of finding math wherever he looks. In 2006, he turned his attention to the fossil record, creating a mathematical model that demonstrated that Earth's biosphere recovered from mass extinctions more quickly than people had thought. He published the result in the Proceedings of the National Academy of Sciences.
    And in 2004, he landed his first publication in Science when he noticed that the spiral patterns in a Chinese jade ring from 500 B.C.E. were perfect Archimedes spirals—and showed that ancient Chinese technology must have been far more advanced than previously thought in order to produce such a ring.

  • #2
    Honnêtement, je n'ai pas vraiment tout compris, je suis assez nulle en maths Et apparemment, personne n'a jamais été assez patient pour m'expliquer

    Bon, j'ai quand même compris un tout petit peu. Et surtout, qu'on a une fois de plus, la preuve de l'extraordinaire culture de la civilisation arabo-musulmane
    « N’attribuez jamais à la malveillance ce qui s’explique très bien par l’incompétence. » - Napoléon Bonaparte

    Commentaire


    • #3
      Salut les amis,

      Il y a un théorème mathématique "très méchant" qui stipule que l'ordre de toute rotation dans le groupe de symmétrie d'un réseau (cristallin) ne peut avoir que les valeurs 2, 3, 4 ou 6. On l'appele le théorème de restriction cristallographique. D'où, tout l'intêret de la découverte de Penrose; la rotation d'ordre 5 est très particulière, c'est à dire 2π/5 = 72°.
      ᴎᴏᴛ ᴇᴠᴇᴎ ᴡᴙᴏᴎɢ!

      Commentaire


      • #4
        Allah ghaleb, là c'est complètement hors de ma portée de compréhension
        « N’attribuez jamais à la malveillance ce qui s’explique très bien par l’incompétence. » - Napoléon Bonaparte

        Commentaire


        • #5
          Salut zakia,

          L'article dit (si j'ai bien compris) que les Musulmans connaissaient il y a plusieurs siécles déjà une technique de paver des surfaces qui est assez complexe. En fait un étudiant a observé que les surfaces de certains monuments en Turquie et en Iran étaient pavées presque à la perfection. Il s'est demandé comment des ouvriers à l'époque aurait pu réaliser une telle couverture en céramique, sur une si grande surface sans se tromper à aucun endroit et en plus les dessins ne semblent pas se répéter.

          Aprés des recherches il a trouvé que c'est basé sur une technique géométrique qu'on pensait assez récente due à Penrose. Ce dernier a montré comment à partir de 2 ou 3 losanges coloriés, ou autres formes assez simples en apparence, mais dont le coloriage et design répond à certaines conditions spécifiques, il pouvait paver des grandes surfaces avec des formes et des designs surprenant et qui ne se répétent pas: des étoiles, des cercles, dans différentes positions ... Tout ca à partir de juste 2 ou 3 formes de bases coloriées.

          Les batiments Islamiques du Moyen Age aussi était surprenant par cet aspect. Ca les rendait beau et impréssionant: on dirait que 1000 artistes et non pas maçon ont travaillé sur certains d'entre eux.

          Mais l'étudiant a prouvé que en fait les architectes Musulmans utilisaient cette méthode: une technique ingénieuse et trés économique. Les 'maçons' ou poseurs de céramiques n'avaient qu'à poser les piéces qui pouvaient correspondre l'une avec l'autre sans trop réfléchir et la fresque émergeait d'elle meme comme par magie: tout le génie résidait dans la préparation que ces architectes mathématiciens mettaient dans les quelques formes de bases (5 au maximum). Cette réfléxion permettait à des designs complexes d'emerger.

          Quand au théoréme de darwish. En bref, imagine que tu dessines un réseau de crystaux sur du papier. Par exemple des carrés tous collé les uns aux autres. Si tu prends un carré au pif, ou un groupe de carré, et que tu le tourne d'un angle de 90°, c'est à dire 2π/4 alors tu ne verra aucune différence. Le théoréme dont darwish parle dit que pour n'importe quel réseau de crystaux, tu ne peux avoir des rotations pareilles que de valeurs de 180°, 120°, 90° ou 60°. Or les designs Islamiques, tout comme les céramiques de Penrose utilisent des réseaux composés plusieurs formes et qui permettent des rotations de 72° possibles, ce qui est rare...

          Enfin j'éspére que darwish saura mieux expliqué et corriger cette explication si il le faut.

          ∑ (1/i²) = π²/6
          i=1

          Commentaire


          • #6
            Enfin j'éspére que darwish saura mieux expliqué et corriger cette explication si il le faut.
            Mon ami Alryib3, ton exposé suffit à lui-même, merci à toi pour avoir si bien présenter les choses.

            P.S. On aimerait bien te voir intervenir plus souvent dans le forum science.
            ᴎᴏᴛ ᴇᴠᴇᴎ ᴡᴙᴏᴎɢ!

            Commentaire


            • #7
              Excellent Alryib3
              Merci pour l'effort, j'ai pas eu la passion de traduire le text

              Commentaire


              • #8
                Merci à vous. J'essayerais d'intervenir plus souvent incha'allah dans le forum science.

                ∑ (1/i²) = π²/6
                i=1

                Commentaire


                • #9
                  Merci Alryib

                  C'est surtout la partie "maths" qui me pose problème

                  Mais bon là c'est un peu plus clair
                  « N’attribuez jamais à la malveillance ce qui s’explique très bien par l’incompétence. » - Napoléon Bonaparte

                  Commentaire

                  Chargement...
                  X