Annonce

Réduire
Aucune annonce.

Les différents avenirs de l’énergie solaire

Réduire
X
 
  • Filtre
  • Heure
  • Afficher
Tout nettoyer
nouveaux messages

  • Les différents avenirs de l’énergie solaire

    Les différents avenirs de l’énergie solaire

    Un certain nombre de news récentes montrent que les différentes voies explorées depuis quelques années dans la perspective d’exploiter de façon plus rentable l’énergie solaire sont en train de porter leurs fruits.

    Jusqu’à présent, les cellules solaires étaient faites en silicium. Le silicium à l’état amorphe a un rendement assez faible, mais ne coûte pas cher (il n’a pas besoin d’être aussi pur que pour les composants électroniques), tandis que le silicium cristallin a un meilleur rendement mais est plus cher. Cependant, la rentabilité des cellules photovoltaïques à base de silicium est compromise par l’augmentation du cours des matières premières. Ses possibilités de développement sont aussi limitées par la nécessité d’un fort ensoleillement, par sa dégradation rapide, par sa fragilité. Le silicium est un semiconducteur "indirect", ce qui signifie, pour faire simple, que la probabilité de créer un électron à partir d’un photon de lumière est assez faible. Il faut qu’un phonon soit créé pour "aider" le processus, et pour augmenter la probabilité que cela arrive, les couches de silicium doivent être assez épaisses.

    La première voie possible pour améliorer la situation se situe du côté des couches minces. En utilisant des matériaux semi-conducteurs plus efficaces (à gap "direct", où le photon crée directement un électron), on peut se passer des couches épaisses requises par le silicium. Du coup, il est possible d’en empiler plusieurs, chacune absorbant un domaine du spectre solaire : le rendement est meilleur, y compris en ensoleillement limité. D’autre part, les couches cent fois plus fines abaisse le coût de revient, même si la matière première est plus coûteuse au kilogramme.

    Cette première technologie est intéressante du strict point de vue du rendement, mais reste classique dans son approche économique et la nécessité de construire de grandes centrales ou "fermes" solaires. D’autres technologies, par contre, portent en elles les germes de nouveaux usages, et donc, d’intérêts économiques.

    Il est par exemple envisagé de recouvrir les toits en acier de tous les hangars, bâtiments industriels, et autres tôleries, par des nanoparticules de semiconducteurs. Un simple spray serait suffisant, et permettrait de valoriser ces larges surfaces. Le problème est la dégradation rapide des particules : une solution envisageable serait de les recouvrir de plastique transparent, mais ce matériau a la fâcheuse tendance à jaunir, c’est-à-dire à devenir moins transparent, après une longue exposition à la lumière. Et il y a toujours le problème de l’utilisation à grande échelle, en milieu urbain, de nanoparticules...

    Une autre branche très prometteuse, et potentiellement très novatrice dans ses applications, est le domaine des semiconducteurs organiques. C’est un domaine de recherche foisonnant, avec déjà un certain nombre d’applications. Par exemple, ces textiles-capteurs solaires, ou ces cellules photovoltaïques sur plastique souple. J’avais aussi eu l’occasion de parler de la perspective d’imiter la nature et sa photosynthèse. Ces technologies pourraient engendrer en cascade de multiples produits : pourquoi ne pas imaginer des sac de randonnée servant de batterie, des bateaux propulsés par des voiles d’un nouveau genre, ou des vêtements bourrés d’électronique auto-alimentés ? Au niveau scientifiques, de multiples voies de recherche sont proposées pour améliorer le rendement encore faible de ces plastiques photovoltaïques. Par exemple, certains polymères s’auto-organisent d’une façon qui multiplie la surface de contact entre les deux électrodes et qui réduit la distance à parcourir pour les électrons, ce qui compense la faible conductivité des polymères. Une autre idée serait d’empiler les couches de semiconducteurs en série, pour augmenter l’intensité produite et le rendement. Cette technique est extrêmement coûteuse avec les semiconducteurs classiques, mais pas avec les plastiques.

    Bref, la créativité dans le domaine de l’énergie fait espérer que des solutions novatrices deviennent économiquement plus intéressante que les hydrocarbures. Cependant, il restera toujours le problème du transport et du stockage de l’énergie, très difficile avec l’électricité telle quelle, mais très facile sous la forme de liquide (pétrole) ou gaz (gaz naturel). C’est peut-être là que l’hydrogène aurait un rôle à jouer, en étant synthétisée dans les déserts du Sahara, du Nouveau-Mexique ou de Gobi, et en étant consommée dans les voitures à New York, Londres ou Pékin...



    Matthieu
    The truth is incontrovertible, malice may attack it, ignorance may deride it, but in the end; there it is.” Winston Churchill
Chargement...
X