L'électronégativité des éléments chimiques est une des clés du comportement de la matière car elle influe sur les liaisons chimiques des atomes dans les molécules et les cristaux. Une première théorie en avait été faite par le prix Nobel Linus Pauling et d'autres avaient suivi au cours des décennies. La dernière en date fait les honneurs du prestigieux journal Nature Communications.
Comme Futura l'expliquait dans un précédent article, le rideau de fer de la guerre froide a parmi ses effets causé l'ignorance de plusieurs grands noms de la science russe du XXe siècle en dehors du cercle restreint des spécialistes européens et américains. Qui par exemple est familier encore de nos jours avec les noms des prix Nobel de physique Lev Landau et Piotr Kapitsa ? Si l'on doit chercher du côté des prix Nobel de chimie, qui a entendu parler de Nikolaï Semionov et de ses travaux sur les réactions en chaîne en chimie ? Enfin, qui a entendu parler de l'Institut de physique et de technologie de Moscou (MIPT pour Moscow Institute of Physics and Technology, Московский Физико-Технический институт, en russe), baptisé PhysTech (Физтех), comme on parle de l'X en France ou du MIT aux États-Unis, et qui a été fondé après la seconde guerre mondiale par ces trois prix Nobel
Linus Pauling et la liaison chimique quantique
En ce qui concerne la chimie, et de l'autre côté de l'Atlantique à la même époque, l'une des stars et également prix Nobel s'appelait Linus Pauling. On lui doit des travaux fondamentaux sur la nature de la liaison chimique qu'il a aidée à élucider en faisant intervenir dans les années 1930 la toute jeune mécanique quantique via sa théorie de l'hybridation des orbitales atomiques.
Au cours de la même période il va reprendre, pour le corriger, le concept d'électronégativité introduit pour la première fois par le chimiste suédois Jöns Berzelius en 1819. Il en fera vers 1932 la théorie moderne associée à ce qui est appelé l'échelle d'électronégativité de Pauling pour les éléments chimiques. Autant dire que même encore aujourd'hui, il reste inspirant de lire les ouvrages de Pauling, aussi bien son introduction à la chimie générale que son traité sur la liaison chimique, voire son traité de chimie quantique. (Par contre, vers la fin de sa vie, ses travaux sur la vitamine C sont hélas devenus un exemple de ce que l'on appelle la maladie du Nobel).
Faisons quelques rappels rapides sur la notion d'électronégativité. Il est admis depuis les travaux du physicien et chimiste états-unien Gilbert Lewis vers 1916 qu'une liaison chimique, en particulier covalente, est une mise en commun d'électrons. Les idées de Lewis (à qui l'on doit le nom de photon pour les quanta de lumière d'Einstein) se sont retrouvées justifiées par la découverte de la mécanique quantique. On peut montrer alors que les densités de probabilités de présence des électrons autour des noyaux d'atomes et dans les molécules sont plus ou moins équivalentes à des densités de charges électriques. Tout se passe alors comme si certains atomes concentraient plus ou moins une charge électrique négative autour d'eux dans une liaison chimique, donnant éventuellement lieu à l'existence d'un moment dipolaire, comme le disent les chimistes et les physiciens dans leur jargon. La liaison chimique devient alors polarisée, toujours dans ce même jargon.
L'électronégativité d'un élément chimique comparée à celle d'un autre est donc une mesure de la capacité du premier à concentrer une charge électrique négative à son avantage lors de l'établissement d'une liaison chimique. La connaissance et la classification des électronégativités des éléments aident donc à prédire et à comprendre quels types de liaisons chimiques ils vont pouvoir former, leur stabilité et finalement des énergies de réactions chimiques ainsi que des propriétés de certains cristaux. Pauling a donc fourni une formule et une classification pour rendre compte de l'électronégativité. Elles sont les plus utilisées mais par la suite d'autres ont été proposées, comme celle de Robert S. Mulliken.
Quid de l'électronégativité à haute pression ?
Aujourd'hui, c'est une nouvelle révision de l'échelle de Pauling qui vient d'être publiée dans un article du prestigieux journal Nature Communications. On la doit au physicien, chimiste et cristallographe russe Artem Oganov, en compagnie de son collègue Christian Tantardini, au Skolkovo Institute of Science and Technology (Skoltech) que l'on peut considérer comme l'équivalent russe du MIT aux États-Unis. Futura a déjà consacré plusieurs articles aux découvertes faites par Artem Oganov avec ses collègues et collaborateurs dans le domaine de la physique et de la chimie des hautes pressions. Le précédent article ci-dessous en témoigne. Pour faire un peu plus connaissance avec Artem Oganov et ses travaux, la vidéo ci-dessus est un bon départ.
Dans un communiqué du Skoltech, Artem Oganov explique le résultat qu'il a obtenu avec Christian Tantardini et qui est mis à l'honneur dans une sélection de Nature Communications :
«Tout a commencé lorsque nous avons décidé de calculer les électronégativités de Pauling sous pression. La chimie des hautes pressions est assez exotique, mais on sera probablement en mesure de comprendre beaucoup de choses une fois que l'on aura découvert comment les électronégativités des éléments changent sous la pression. Nous avons utilisé la définition de Pauling pour calculer l'électronégativité dans des conditions normales et avons été étonnés de découvrir que son échelle ne correspondait pas aux énergies de liaison théoriques ou expérimentales pour des molécules significativement ioniques. De plus, de nombreuses publications dans la littérature chimique mentionnaient ce problème mais aucune n'offrait de solution cohérente. J'ai compris que la raison principale en était que Pauling traitait la stabilisation ionique de la molécule comme un effet additif, alors que si nous la considérons comme un effet multiplicatif, de nombreux inconvénients seront supprimés. Avec la nouvelle formule et les énergies expérimentales des liaisons chimiques, nous avons déterminé les électronégativités de tous les éléments et obtenu une belle échelle qui fonctionne aussi bien pour les petites que pour les grandes différences d'électronégativité.»
futura
Comme Futura l'expliquait dans un précédent article, le rideau de fer de la guerre froide a parmi ses effets causé l'ignorance de plusieurs grands noms de la science russe du XXe siècle en dehors du cercle restreint des spécialistes européens et américains. Qui par exemple est familier encore de nos jours avec les noms des prix Nobel de physique Lev Landau et Piotr Kapitsa ? Si l'on doit chercher du côté des prix Nobel de chimie, qui a entendu parler de Nikolaï Semionov et de ses travaux sur les réactions en chaîne en chimie ? Enfin, qui a entendu parler de l'Institut de physique et de technologie de Moscou (MIPT pour Moscow Institute of Physics and Technology, Московский Физико-Технический институт, en russe), baptisé PhysTech (Физтех), comme on parle de l'X en France ou du MIT aux États-Unis, et qui a été fondé après la seconde guerre mondiale par ces trois prix Nobel
Linus Pauling et la liaison chimique quantique
En ce qui concerne la chimie, et de l'autre côté de l'Atlantique à la même époque, l'une des stars et également prix Nobel s'appelait Linus Pauling. On lui doit des travaux fondamentaux sur la nature de la liaison chimique qu'il a aidée à élucider en faisant intervenir dans les années 1930 la toute jeune mécanique quantique via sa théorie de l'hybridation des orbitales atomiques.
Au cours de la même période il va reprendre, pour le corriger, le concept d'électronégativité introduit pour la première fois par le chimiste suédois Jöns Berzelius en 1819. Il en fera vers 1932 la théorie moderne associée à ce qui est appelé l'échelle d'électronégativité de Pauling pour les éléments chimiques. Autant dire que même encore aujourd'hui, il reste inspirant de lire les ouvrages de Pauling, aussi bien son introduction à la chimie générale que son traité sur la liaison chimique, voire son traité de chimie quantique. (Par contre, vers la fin de sa vie, ses travaux sur la vitamine C sont hélas devenus un exemple de ce que l'on appelle la maladie du Nobel).
Faisons quelques rappels rapides sur la notion d'électronégativité. Il est admis depuis les travaux du physicien et chimiste états-unien Gilbert Lewis vers 1916 qu'une liaison chimique, en particulier covalente, est une mise en commun d'électrons. Les idées de Lewis (à qui l'on doit le nom de photon pour les quanta de lumière d'Einstein) se sont retrouvées justifiées par la découverte de la mécanique quantique. On peut montrer alors que les densités de probabilités de présence des électrons autour des noyaux d'atomes et dans les molécules sont plus ou moins équivalentes à des densités de charges électriques. Tout se passe alors comme si certains atomes concentraient plus ou moins une charge électrique négative autour d'eux dans une liaison chimique, donnant éventuellement lieu à l'existence d'un moment dipolaire, comme le disent les chimistes et les physiciens dans leur jargon. La liaison chimique devient alors polarisée, toujours dans ce même jargon.
L'électronégativité d'un élément chimique comparée à celle d'un autre est donc une mesure de la capacité du premier à concentrer une charge électrique négative à son avantage lors de l'établissement d'une liaison chimique. La connaissance et la classification des électronégativités des éléments aident donc à prédire et à comprendre quels types de liaisons chimiques ils vont pouvoir former, leur stabilité et finalement des énergies de réactions chimiques ainsi que des propriétés de certains cristaux. Pauling a donc fourni une formule et une classification pour rendre compte de l'électronégativité. Elles sont les plus utilisées mais par la suite d'autres ont été proposées, comme celle de Robert S. Mulliken.
Quid de l'électronégativité à haute pression ?
Aujourd'hui, c'est une nouvelle révision de l'échelle de Pauling qui vient d'être publiée dans un article du prestigieux journal Nature Communications. On la doit au physicien, chimiste et cristallographe russe Artem Oganov, en compagnie de son collègue Christian Tantardini, au Skolkovo Institute of Science and Technology (Skoltech) que l'on peut considérer comme l'équivalent russe du MIT aux États-Unis. Futura a déjà consacré plusieurs articles aux découvertes faites par Artem Oganov avec ses collègues et collaborateurs dans le domaine de la physique et de la chimie des hautes pressions. Le précédent article ci-dessous en témoigne. Pour faire un peu plus connaissance avec Artem Oganov et ses travaux, la vidéo ci-dessus est un bon départ.
Dans un communiqué du Skoltech, Artem Oganov explique le résultat qu'il a obtenu avec Christian Tantardini et qui est mis à l'honneur dans une sélection de Nature Communications :
«Tout a commencé lorsque nous avons décidé de calculer les électronégativités de Pauling sous pression. La chimie des hautes pressions est assez exotique, mais on sera probablement en mesure de comprendre beaucoup de choses une fois que l'on aura découvert comment les électronégativités des éléments changent sous la pression. Nous avons utilisé la définition de Pauling pour calculer l'électronégativité dans des conditions normales et avons été étonnés de découvrir que son échelle ne correspondait pas aux énergies de liaison théoriques ou expérimentales pour des molécules significativement ioniques. De plus, de nombreuses publications dans la littérature chimique mentionnaient ce problème mais aucune n'offrait de solution cohérente. J'ai compris que la raison principale en était que Pauling traitait la stabilisation ionique de la molécule comme un effet additif, alors que si nous la considérons comme un effet multiplicatif, de nombreux inconvénients seront supprimés. Avec la nouvelle formule et les énergies expérimentales des liaisons chimiques, nous avons déterminé les électronégativités de tous les éléments et obtenu une belle échelle qui fonctionne aussi bien pour les petites que pour les grandes différences d'électronégativité.»
futura